Did you want to add anything to the discussion or just make a snarky comment? I looked through the paper linked in the article and didn’t see a capacity listed.
Our approach directs an alternative Li2S deposition pathway to the commonly reported lateral growth and 3D thickening growth mode, ameliorating the electrode passivation. Therefore, a Li–S cell capable of charging/discharging at 5C (12 min) while maintaining excellent cycling stability (82% capacity retention) for 1000 cycles is demonstrated. Even under high S loading (8.3 mg cm–2) and low electrolyte/sulfur ratio (3.8 mL mg–1), the sulfur cathode still delivers a high areal capacity of >7 mAh cm–2 for 80 cycles.
A 5C charging rate is great, but it’s pretty useless if the battery is too small to be practical.
If only the claim were accompanied by a detailed explanation of what the people involved have actually achieved.
Did you want to add anything to the discussion or just make a snarky comment? I looked through the paper linked in the article and didn’t see a capacity listed.
A 5C charging rate is great, but it’s pretty useless if the battery is too small to be practical.
No I didn’t want to add anything to the discussion, thank you.